GelSight SIGGRAPH paper
Microgeometry Capture using an Elastomeric Sensor by Micah K. Johnson, Forrester Cole, Alvin Raj, and Edward H. Adelson. (ACM SIGGRAPH, 2011)
Abstract: We describe a system for capturing microscopic surface geometry. The system extends the retrographic sensor [Johnson and Adelson 2009] to the microscopic domain, demonstrating spatial resolution as small as 2 microns. In contrast to existing microgeometry capture techniques, the system is not affected by the optical characteristics of the surface being measured—it captures the same geometry whether the object is matte, glossy, or transparent. In addition, the hardware design allows for a variety of form factors, including a hand-held device that can be used to capture high-resolution surface geometry in the field. We achieve these results with a combination of improved sensor materials, illumination design, and reconstruction algorithm, as compared to the original sensor of Johnson and Adelson [2009]. Download PDF »
GelSight CVPR paper
Retrographic Sensing for the Measurement of Surface Texture and Shape by Micah K. Johnson and Edward H. Adelson. (IEEE Computer Vision and Pattern Recognition, 2009)
Abstract: We describe a novel device that can be used as a 2.5D "scanner" for acquiring surface texture and shape. The device consists of a slab of clear elastomer covered with a reflective skin. When an object presses on the skin, the skin distorts to take on the shape of the object's surface. When viewed from behind (through the elastomer slab), the skin appears as a relief replica of the surface. A camera records an image of this relief, using illumination from red, green, and blue light sources at three different positions. A photometric stereo algorithm that is tailored to the device is then used to reconstruct the surface. There is no problem dealing with transparent or specular materials because the skin supplies its own BRDF. Complete information is recorded in a single frame; therefore we can record video of the changing deformation of the skin, and then generate an animation of the changing surface. Our sensor has no moving parts (other than the elastomer slab), uses inexpensive materials, and can be made into a portable device that can be used "in the field" to record surface shape and texture. Download PDF »